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Exact Results for the Asymmetric Simple 
Exclusion Process with a Blockage 
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We present new results for the current as a function of transmission rate in the 
one-dimensional totally asymmetric simple exclusion process (TASEP) with a 
blockage that lowers the jump rate at one site from one to r < I. Exact finite- 
volume results serve to bound the allowed values for the current in the infinite 
system. This proves the existence of a nonequilibrium "phase transition," 
corresponding to an "immiscibility" gap in the allowed values of the asymptotic 
densities which the infinite system can have in a stationary state. A series 
expansion in r, derived from the finite systems, is proven to be asymptotic for 
all sufficiently large systems. Pad6 approximants based on this series, which 
make specific assumptions about the nature of the singularity at r = I, match 
numerical data for the "infinite" system to I part in 104. 

KEY W O R D S :  Asymmetric simple exclusion process; stochastic particle 
systems; series expansion 

1. INTRODUCTION 

The one-dimensional totally asymmetric simple exclusion process (TASEP) 
is a continuous-time stochastic process in which particles on a one-dimen- 
sional lattice jump independently and randomly at unit rate to vacant 
neighboring sites on their immediate right. II~ It corresponds to a Kawasaki 
exchange dynamics 12~ at infinite temperature and infinite electric field. ~31 
The stationary state for this system for K particles on a ring of N sites, 
N>~K, gives equal weight to all (~) permissible configurations. This 
measure goes over, in the limit N--+ oo, K/N--+ p, to the product measure 
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with occupation probability p. The TASEP is thus the simples driven 
diffusive lattice-gas model whose dynamics does not satisfy detailed 
balance. (3) It is also, for the infinite lattice, an example of a microscopic 
system for which one can derive Euler-like hydrodynamic equations, (4) e.g., 
the Burgers equation. 

In an earlier work (5) we introduced a variant of the TASEP where the 
jump rate across one bond of the system was reduced from 1 to r, 0 < r < 1. 
If one thinks of the TASEP as a model for fluid flow in a pipe, this is 
analogous to a restriction in the diameter of the pipe. More realistically 
perhaps we could consider a superionic conductor (6) like AgI or KAgaI5 in 
the geometry of a pinched doughnut, with a time-varying magnetic field 
generating an electromotive force; or a partially blocked road in a model 
of traffic flow. tT) Clearly the rate decrease will increase the particle density 
to the immediate left of this "blockage" bond and decrease the density to 
its immediate right, but what is not obvious is that this perturbation may 
have global in addition to local effects. Equivalent to introducing a defect 
into a growth surface, ~8'9) this blockage can cause the nonequilibrium 
stationary states of the model to exhibit a segregation into high- and low- 
density regions. This allows the full complexity of the model, previously 
available only through time-dependent studies, to be displayed via the 
stationary state/5' ]0~ Among other features we observed for the system of 
K particles on a ring of size N, with K and N large, was the equality of the 
exponents governing the time and space scalings of shock fluctuations. 

It is convenient to label the sites on the ring from - N / 2  to N/2 ( - N / 2  
and N/2 refer to the same site), with the blockage located at the bond 
between 0 and 1. The stationary density profile for a half-filled system can 
be seen in Fig. 1. As we approach the limit N---, oo keeping KIN = p fixed, 
we have that far from the blockage the density becomes uniform and 
the stationary state appears to be asymptotically a product measure 
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Fig. I. Density profile (from time average in simulation) for a half-filled system with 600 
sites and periodic boundary conditions. The blockage bond is located between site 0 and site 
l and has the value r = 0.33. 
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(Bramson (~) has proven this) with densities limx_+o~p(x)=p• with 
p+ < p _ ;  the p•  are independent of p for I P - 1 / 2 1  less than a certain 
value described in the next section. The densities are related by the condi- 
tion of constant current: J = p + ( 1 - p + ) = p _ ( 1 - p _ ). When segregation 
takes place we thus have 1 / 2 - p +  = p _ -  1/2. One is of course interested 
in the asymptotic densities p•  and current J as a function of the 
transmission rate r. In ref. 5 these could only be determined numerically; 
the simple estimate obtained by neglecting the (large) correlations near the 
blockage, i.e., by assuming a uniform product measure with density p_  
(resp. p+)  to the left (resp. right) of the origin, gives 

r 

J~rp_(1 - P + )  ~ (1 + r )  - - - - - q  (1) 

which is accurate only for very small r. This is in contrast with the transla- 
tion-invariant case, where, as already mentioned, there are no correlations 
in the stationary state. Here, in order to obtain more accurate estimates, it 
is necessary to include the effects of correlations, which decay slowly with 
the distance from the blockage, typical of systems with conservative 
dynamics not satisfying detailed balance. (~2-~4~ (In ref. 5 this decay was 
found numerically to go like the inverse power of the distance.) 

Although one is interested in asymptotic behavior, it can be fruitful to 
examine the behavior of small systems with open boundary conditions for 
which one can determine the stationary state exactly. In a closely related 
model ~5) this led to an exact solution for all system sizes. Furthermore, as 
we shall see, results for such systems give a systematic improvement on the 
estimate (1) as well as bounds on the current J for the infinite system at 
fixed r and thus also on the maximum value of p +. We therefore studied 
systems, ranging in size from two to ten sites, in which particles are added 
at the left with rate a and removed at the right with rate ft. At non- 
boundary sites particles jump independently to empty neighboring sites on 
the right with rate r for the jump between sites 0 and 1, where the blockage 
is located, and with rate 1 for all other jumps. The process is thus defined 
(on a lattice with N =  2L sites) for any r >/0 by the generator ~ giving the 
rate of change of any function of the configuration r /= { t / ( - L +  1), 
r / ( - L + 2 )  ..... r/(L)}, where q ( k ) = 0  or 1 is the occupation number at 
sike k: 

- -1  

.gaf(t/) = a[J~(r/_L+ ,. + ) - f ( t / ) ]  + ~ [f(rli+,+,)-f(rl) ] 
i = - - L + I  

L - - I  

+r[f(rlo~,)--f(q) ] + ~ [ f ( r / ,~ , .+ t ) - - f ( t / ) ]  
i = 1  

+ fl[ f(t/L._ ) - f (q )  ] (2) 
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where rli~j(k ) gives the configuration at site k after an attempted jump 
from site i to site j :  

f 
l, k = j  and t / ( i )= l  

r / ; _ j (k )=  0, k = i  and r / ( j ) = 0  (3) 

r/(k), otherwise 

The boundary terms are given in terms of 

~'(1 + 1)/2, k = i  
ni, +_(k)= (n(k), k r  (4) 

2. EXACT S O L U T I O N S  FOR S M A L L  S Y S T E M S  

For a system with 2L sites there a r e  2 2L possible configurations. By 
considering the set of equations ( ~ # f ~ ) =  0 where f,. is the characteristic 
function of the ith configuration, one obtains a system of equations whose 
(normalized) solution is the unique stationary state for the model, i.e., one 
obtains the unique stationary solution of the master equation for the open 
finite system. 

Solving such a system of equations is a daunting computational task. 
However, by fixing ct and fl and then making use of the reflection symmetry 
of the problem (which for ~ = fl reduces the number of variables by a factor 
slightly less than 2), we were able to exactly solve for systems up to size 8 
leaving r as an indeterminate parameter and size l0 for fixed r. The com- 
putations were performed using Maple V running on a SPARCstation 2. 

Typically we took a = fl = a = l; it is intuitively clear (and not difficult 
to prove~)) ,  given the asymptotic product structure behavior of the 
infinite system stationary measure, that the current should become inde- 
pendent of ct and fl for large L, provided they are greater than some critical 
value which goes to zero as r goes to zero and equals 1/2 for r >i 1. This 
critical value of a = ac is simply related to the maximum current Jmax(r) the 
infinite system with blockage r can support; Jmax(r)=ac(l-ac) ,  i.e., 
at(r) = [ 1 - ( 1  - 4 J m a  x)l/2 ]/2 is just the density of a product measure at the 
maximum current. Clearly Jmax(r) is a monotone nondecreasing function of 
r equal to 1/4 for r/> 1. The system "selects" the state of maximum current, 
p+ = [ I - ( 1 - - 4 J m a x ) l / 2 ] / 2  and p_  = 1 - - p + ,  as long as the boundaries 
can supply and remove particles quickly enough. (16) The (asymptotic) state 
should therefore not depend on the precise values of 0c and fl with correc- 
tions local to the boundary region, t~5' ~7~ Alternatively, if one considered 
periodic boundary conditions instead of an open system, we would expect 
equivalent asymptotics with densities p_  = 1 - p +  for all values of the 
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average density p between [ 1 - ( 1 - - 4 J m a x ) 1 / 2  ]/2 and [ 1 + ( 1 - 4 J m a x ) 1 / 2 ] / 2 .  

For  average densities outside the interval the limiting asymptotic densities 
should be equal to the average density both to the left and right of  the 
blockage. The behavior is illustrated in Fig. 4, where we show, for each 
value of  r, the values of  p for which p = p + = p _  is "allowed." 

We present some of  the results for small systems below. JL(r, a) is the 
steady-state current in a system with 2L sites at ~ = fl = a; JL( r ) -  JL(r, 1 ). 
We have 

2or 2r ( 1 )  r 
J l ( r ,a )= J l ( r )  = 2 Jt  r ,~  1 2a + 3r '  + 3 r '  - + 3 r  (5) 

J2(r, a) = 2ar[4a z + 8a 3 + 4a 4 + (7a + 12a 2 + 6a 3) r + (2 + 4a + 2a 2) r 2 ] 

x [8a  3 + 16a 4 +  8a 5 + ( 1 4 a  2 + 36a 3 + 36a 4 +  12aS)r 

+(18a+45a2+44a318a4)r2+(5+ 1 4 a +  14a2+6a3)r3] -l  (6) 

2r(16+25r+8r  2) ( 1 )  2r (9+29r+18r  2) 
J2(r) - 

3 2 + 9 8 r + 1 2 5 r 2 + 3 9 r  3' J2 r, - 1 8 + 8 5 r + 2 1 5 r 2  + 1 3 0 r  3 

(7) 

J 3 ( r )  = [4r(47775744 + 261095424r + 669424384r 2 

+ 1009680576r 3 + 968982368r 4 

+ 609395274r 5 + 250834237r 6 + 65287925r 7 

+ 9784215r 8 + 644781 rg)] 

x [ 191102976 + 1331036160r 

+ 4447316992r z + 9277942272r 3 

+ 12731145304r 4 + 11671707972r 5 

+ 7170513506r 6 + 2914237861 r 7 

+ 753023405r 8 + 112354075r 9 + 7383541r t~ -J (8) 

We observe that JL(r) is a rational function of  r with integer coefficients, 
and the order of the function and the complexity of  the coefficients grow 
rapidly with system size--J4(r)  has terms up to 34th order with the largest 
coefficient being 5_1 digits long, and is reproduced in Appendix A. We note 
that the value of  Jr.(1) was obtained explicitly in ref. 15 for all L, namely 
that 

f 3] 1 3 = J ~ , ( 1 )  I (9 )  
JL(I)  = 4 + 4 ( 1  + 4 L )  
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3. B O U N D S  ON THE INFINITE SYSTEM 

For  r = 1, a product  measure with any density p E [0, 1 ] is s ta t ionary 
in the infinite system, and thus the system can have any current in the 
range 0-1/4. For  r < l, this is not necessarily the case; Jmax(r) may  be less 
than I/4. In this case there is, as already noted, only a range of asymptot ic  
densities, satisfying [p+ - 1/2[ > [ 1 --4Jmax(r)l/2]/2, which is permitted. 
The problem thus is to find bounds  on Jmax(r). A very simple bound on 
Jmax(r) can be obtained by noting that  if we remove the right (or left) half  
of  the system, i.e., keep all sites there empty  (occupied), we are left with a 
system of L sites with input ( removal)  rate a and removal  (input) rate r. 
By a direct compar ison of the original and new ("removed")  systems, 
obtained by coupling, i.e., s imultaneously at tempting jumps  at a given 
lattice bond in the two systems, it is possible to show that  the current 
at(L; oq fl) in a system of L sites with input rate ct, removal  rate fl, and all 
"internal" j ump  rates now being unity, satisfies the inequalities 

JL(r, a) <<, at(L; a, r) = at(L; r, a) (10) 

The last equality as well as exact formulas for 3 (L ;a ,  fl) have been 
computed  in refs. 15 and 17. In part icular  for a>~r and r~< 1/2 we have 
l imL_ ~. at(L; a, r) = r( l - r), so that Jmax(r) ~< r( 1 -- r) for r ~< 1/2. 

For  a and r both  greater than 1/2 the right-hand side of (10) 
approaches  1/4, so it yields no new informat ion- - jus t  a p roof  that Jmax(r) 
cannot  exceed 1/4. 

To  obtain better bounds,  we note that  for any configuration, since the 
max imum rate at which a particle a t tempts  to j u m p  onto any site is bounded 
by one, the current  in a system of size L with boundary  conditions 
a = fl = 1 cannot  increase as L increases. This can be made precise with a 
little work by using (similar type) compar ison or coupling arguments  as 
before. Note  that a = f l =  1 corresponds to keeping the site - L  always 
occupied and the site L + 1 always vacant  in a system of size L '  > L. Thus 
JL(r) is monotonical ly  decreasing in L, and for every finite value of L, Jt(r) 
is an upper  bound for Joo(r). [Similar  arguments  show that  JL(r, a) is non- 
decreasing in r and a.] These bounds prove the existence of a gap in the 
set of  s tat ionary measures of  the infinite system; the results for finite L 
(illustrated in Fig. 2) show that wherever there exis ts  an L such that  
JL(r) < 1/4 there is a forbidden range of currents. [ O n e  result from our  
simulations is that J,5ooo(0.8)= 0.24979(5), indicating that  the gap exists at 
least up to r =  0.8.] 

We note here also that letting a ~ ~ in JL(r, a) corresponds to reducing 
the size of  the system from 2L to 2 ( L - 1 ) ,  so that  lim . . . .  JL(r, a)= 
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Fig .  2. 
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JL(r, l )  a n d  JL(r, 1/2) for several values of L. Where JL(r, l ) <  1/4 there must be a 

gap in the allowed stationary measures of the infinite system. 

JL-l(r). Using monontonicity in a, this implies again that JL(r) is 
monotone  nonincreasing in L. 

For the case 0 t = f l = l / 2  the sequence JL(r, 1/2) appears to be 
increasing in L, and we believe that J~(r)>~JL(r, 1/2), since the boundary 
condition with rate 1/2 should reduce the number of  particles entering the 
system as compared with a boundary-free system where the asymptotic 
density would be > 1/2 (on the left), but unfortunately we cannot prove 
this result. Proving such an inequality is nontrivial since J~(r) is the maxi- 
mum current the infinite system can have; there exist stationary measures 
where the current is less than JL(r, 1/2). Thus our results for finite L only 
provide rigorous one-sided bounds. Note  also that JL(1, 1 / 2 ) =  1/4 for 
all L. t15) 

Series Expansion 

While there is no apparent pattern to the "raw" expressions for the 
current (5)-(8) ,  (A.1), one does emerge if we examine a Taylor expansion 
around r =  0. We obtain 

"~ 2 9 . 3  . ~ r  4 81..5 ~_~r6_l_O(r 7) ( 1 1 )  J l ( r ) = r - ~ r  + ~ l  - + i z r  - 

3 "~ 19 ..3 257 ..4 d.. 24105 -5  829297 ..6 - -  / ' ~ / r 7x  
J 2 ( r ) = r - - ~ _ r ' + T ~  r - - i 3 U  - -  4 ~  - r  - -  6~3~-36 r - r i J ~  j (12) 

"~ ~ 19 3 21535 4 - -  919407829.5 J3(r) = r -  ~r- + ~ r  - 2-T~r -I ~ r  

7398899579671 r 6 
417942208512 + O ( r  7)  (13) 
"~ 2 19 3 21535 4 - - 7 7 7 2 9 3 5 6 6 2 7  ..5 Ja(r) = r -- ~r + izr -- 2-T~r t- ~ r  

1067903077191004635349 r 6 
~- 126214320739011526656 -~- O ( r  7 )  (14) 
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There  is a c lear  pat tern:  as we increase the  size o f  the system, the l o w - o r d e r  

coefficients s top  chang ing  after  a cer ta in  point .  Assuming  the c o n t i n u a t i o n  
o f  this behav io r ,  and  inc lud ing  the results  for the size 10 system, we have  

Jo~.(r) = r - -  ~ r  2 - 19 3 21535,4 ..1- 77729356627 -5 
t ]'gF - -  2-ff~8" ~ 146767085568 r 

- 0.3278724755( 1 )r  6 + O(r  7) 

~ - - r - - ~ r 2 . . l  L ~-t19-3 _ 2-'~a'7"~ -,/5'59"73~47!_ 13.33613-1778832 ~6- 37 r5  

- -0 .3278724755(1 ) r  6 + O ( r  7) (15) 

In  the second  par t  o f  (15) we show the p r ime  fac to r i za t ion  o f  the coef- 

ficients; the d e n o m i n a t o r s  a p p e a r  decept ive ly  s imple,  whi le  e x a m i n a t i o n  o f  

the n u m e r a t o r s  p roves  less instruct ive.  
Inc lud ing  the dependence  o f  the  b o u n d a r y  te rms  (i.e., t ak ing  a q: 1) 

does  no t  s ignif icant ly a l ter  this behav io r :  

3 9 3 27 4 
Jl(r, a) = r - ~aa r2 + 4a ----5 r - 8a--- 3 r + O(r  5) (16) 

3 r2 9 a 4 +  1 8 a 3 + 7 a Z - 8 a - 7  
Jz(r, a ) = r - - ~  + 4 a 2 ( a +  1) 2 r 3 

54a 7 + 216a 6 + 300a 5 + 64a 4 -- 294a 3 -- 370a 2 -- 188a -- 39 
i ,  4 

+ O(r 5) 

3 2 19 3 J3 ( r , a )=r - -~r  + ~ r  

16a~(a + 1) 4 

+(514aJ4+6939aJ3+41551alZ+144387all+316671atO 

+ 4 3 2 6 6 1 a  9 + 285181a 8 -- 176743a 7 -- 702157a 6 

- 944908a 5 - 799104a 4 --  457504a 3 

- 172480a 2 - 38528a - 3840) r 4 

• [ 256a3( 1 + 2a) (a  + 2) 3 (a + 1) 7 ] -1 -1- O(r  5) 

The  dependence  on  the b o u n d a r y  appea r s  one  t e rm 
(11 ) - (14) ,  bu t  o therwise ,  the s t ruc ture  is the same. 

ear l ier  

(17) 

(18) 

t han  in 
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In fact, the assumption regarding the behavior of  the Taylor coef- 
ficients for progressively larger systems expressed in (l 1)-(18) can be 
proven to be correct: 

Theorem 1. Fix L 2. Then for L I ~< L2 ,  JL2(r)= JL , ( r )+  O(r L' +2). 

Theorem 2. Fix L 2. Then for L~ ~< L 2 and a > 0, 
Jt.2(r, a) = JL,(r) + O(r L' + i). 

Thus we see a small system not only bounds but also provides a good 
approximation (at least for small r) for any (finite) system that is larger. 
This also strongly suggests that the approach of  JL(r) to Jo~(r) is exponen- 
tial for r > 1. Of  course the rate of  the exponential approach vanishes at 
r =  1, where the convergence becomes algebraic I-see (9)].  We do not con- 
sider the infinite system, as our  proof  does not provide bounds uniform in 
the system size; we reserve the proof  for Appendix B. 

4. PADI~ A P P R O X I M A N T S  

The Taylor  series given in (15) gives an accurate measure of  the 
current for small r, but for large r it is less successful. In fact, we can see 
that the series must  break down by r = l: al though one commonly  thinks 
of r as being a transmission rate ~< l, it is perfectly acceptable to take r > l 
in the generator (2). It is also fairly easy to see, by comparison with a 
system with a boundary  at the origin, that the infinite-volume current 
J~(r) will have the same value for all r~> 1, namely J ~ ( l ) =  1/4, so that 
there must be a nonanalyticity for some r~< 1 in Job(r). One can also 
examine the coefficients of  (15) and see that they apparently decrease (in 
magnitude) rather slowly, indicating that the radius of  convergence of  the 
series is most probably 1 (al though we do not even have a proof  that the 
series converges of  any r > 0, just asymptotic results as r--,  0 for a fixed 
number  of  terms). Some numerical analysis indicates that there is no dis- 
continuity in any of  the derivatives of  J~(r)  at r = 1; this evidence leads us 
to hypothesize that there is an essential singularity at r = 1 in J~(r). An 
alternative which Cannot be ruled out by our  results is that Job(r)= 1/4 for 
r > rj with r~ < 1. Numerical results for the structure of  JL(r) would seem, 
however, to argue in favor of  a changeover at r = 1. 

We thus look for a function of  the appropriate form the current. The 
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"simplest" function with an essential singularity at r =  1 that  also gives 
J~.(0) = 0 and J ~ , ( 1 ) =  1/4 is a function of the form 

J~(r) = 1/4 - exp[f(r)]/4 (19) 

where f(r) has a simple pole at r =  1. We therefore examined functions of  
the form 

1 1 
f ( , ' )  = ~ - - ~  exp [(1 --~-q(r)JP(r) l (20) 

Specifically, we used our Taylor  series to fit the following Pad6 
approximants :  

1 1 F -4r(l+alr+a2r2) 1 
J33(r) = ~ - ~ exp L( i - ~ i -  + - ~  r +-b2 r2) j  (21) 

1 j43(r) = ~ - -  

1 J34(r) = ~ -- 

1 [-4r!l+a'ir_+a':2+a~r3) l 
exp (22) L (l-r)(1-b'lr+b'2 r2) _] 

l 1- t, ,, 2 - - 4 r ( l + a l r + a 2 r  ) 1 
~ e x p  [(1 -- r)(----i -+-b';r------+b"r--~-b~'ra)J (23) 

The actual values of  the coefficients of the Pad6 approximants  are not 
particularly revealing, as one might expect. The Pad6 functions do, 
however, appear  to be converging pointwise: for r e  [0, 1 ] the max imum 
difference between any of j33, j43, and j34 is less than 2 x 10-5 
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Fig. 3. Taylor, Padr, and numerical results. Estimated errors for the numerical calculations 
are less than the thickness of the lines, ranging from 5 x 10-5 to 2 x 10-*. 
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Of course we are not interested in how well the different approximants 
approximate each other, but how well they approximate Jo~(r). We thus 
must compare the approximants with numerical simulations. We see in 
Fig. 3 that the approximation is within the error bounds of the simulations; 
we happened to have plotted j43,  but any of the approximants would 
have fit the data as well. In comparison, a Pad6 approximant that behaves 
quadratically or quartically at r =  1 (as opposed to exponentially) looks 
qualitatively similar but does not fall within the error bounds of the 
simulations. 

The simulation results were obtained by direct simulation of the 
TASEP dynamics; progressively larger systems were used until the current 
reached an asymptotic value. For small values of r this occurred quite 
quickly, but the needed system size grows quite rapidly as one approaches 
r = 1: for r = 0.7 we needed to investigate systems with 6400 sites and for 
r =  0.8 we needed to investigate systems with 15000 sites. 

Our results can also be viewed as the determination of the phase 
diagram for the system. As mentioned earlier, the current Job(r) is the 
maximum stationary current permitted by the infinite system--with some 
boundary conditions the current may be less. Accepting tlt~ that the station- 
ary measure is asymptotically a product measure, then Jo~, = Po~.(1-Po~.), 
and the bound on the current is equivalent to a bound on the allowable 
range of densities. We plot the boundary of this range, the critical density, 
against the transmission rate in Fig. 4. If the overall density of the finite 
system in a periodic box p was in the disallowed region, the system would 
have to segregate with high density p_  to the left of the blockage and low 
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Fig. 4. Schematic phase diagram of allowed asymptotic densities p_  and p § versus transmis- 
sion. In the region labeled allowed, p_ = p + = p is permitted. The boundary points between 
the allowed and not allowed region are, for a given r, the unique permitted values of p • The 
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density p + to the right of it, with p_  + p + = 1 and p = cp_ + (1 - c ) p  + for 
some fraction c, 0 < c < 1. 

The phase diagram is apparently quite different from that normally 
observed in systems that phase segregate, with a cusp at the critical point 
if one believes the Pad6 approximants accurately describe the behavior of 
the system. Of course one should remember the rather unique nature of this 
type of transition. 

5. DISCUSSION 

When a system has dynamics that do not satisfy detailed balance, the 
steady states do not (in general) have the form of Gibbs states. Thus, even 
a qualitative description of the nature of the steady states, particularly with 
respect to the dependence on the parameters entering the dynamics, is 
lacking. Standard perturbative or finite-size extrapolation techniques 
available for Gibbs measures are generally inapplicable, and most of our 
knowledge comes from computer simulations, approximate calculations 
using renormalization group (universality) ideas, and a few exactly soluble 
models. 

It thus is quite remarkable that for the system considered here infor- 
mation determined from a system with ten sites not only provides rigorous 
bounds, but also appears to predict accurately the behavior of the current 
in an infinite system. At least this is true numerically for a system with 104 
(or more) sites to within 1 part in 104 for all values of the parameter r. This 
is particularly interesting given that quantities besides the asymptotic 
current, e.g., the local density near the blockage, are not given accurately 
by the results from small systems. 

We hope that it will be possible to determine a general formula for the 
terms in our Taylor series-- certainly the sequence of denominators 
(1, 2, 24, 21~ 2263 7) seems tractable. Since the coefficients are independent 
of system size (if the system is big enough), only reasonably-sized systems 
need to be studied in order to obtain useful results. Unfortunately, direct 
computation of higher-order terms seems unlikely, given that the computa- 
tional complexity grows exponentially, without further theoretical input. 

Even if our computations cannot be extended, there remains the 
possibility of proving that some of our qualitative description of the phase 
diagram is correct. Our series is only proven to be asymptotic for small r, 
but we have already seen that finite systems can serve to bound certain 
properties of the infinite system for arbitrary values of r: for example, we 
believe that Jr(r, 1/2)<~Jo~(r) and we know that Jo~(r)<<,JL(r, 1) for all 
L > 0  and all 0<~r~< 1. 
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APPENDIX B. PROOF OF THEOREM 1 

To prove Theorem 1, we will need to consider systems with unequal 
numbers of sites to the left and to the right of the blockage, say L_  and 
L+,  respectively; J L .  L§ will represent the current in such a system with 

= fl = 1. We will prove the following lemma: 

Lemma 1. F i x L _  and L + . T h e n  for L ' ~ < L _  and L'+~<L+, 

JL_ .L+(r )=JLLL+(r )+O(r  U-+2) and JL_.L+(r)=JL.L .+(r )WO(r  L'++2) 

Theorem 1 is a direct consequence: for L2/> L, ,  

JL,(r) = JL,. L:(r) = JL:. L,(r) + 0(  rL' + z) = JL,. L,(r) + O(r L' + z) 

= JL,(r) + O(r L' +2) 

Now we prove the lemma, considering only the case L'+ ~< L +, since 
the case L '  ~< L_ is the same by symmetry. We will need to consider 
probabilities of certain collections of configurations. We write 

Pr(q-L_ + ,, q-L_ +Z ..... qo; r/,, q2 ..... r/N)L. L'+ (B.1) 

for 0 ~< N ~< L'+. This represents the marginal probability of the configura- 
tion at sites - L _ + I ,  - L  +2,. . . ,N; the rest of the sites can take 
arbitrary values. The semicolon indicates the position of the blockage in 
the system. 

Let eR(q) be the number of the q, ,  q2 ..... qN that take the value 1, i.e., 
eR(tl) = Z~u=, t/i. For r small, particles to the right of the blockage are rare 
and can be treated as excitations; eR(q) can be thought of as the (right) 
excitation number in the system. 

Our proof proceeds by induction: Suppose we know all probabilities 
of the form P r ( q - L _ + , , q - L _ + 2  ..... qo;q,  ..... qN)L_.L'+ to a certain 
accuracy, namely to order eR({ q, ..... qN} ) + k in r. Then (for N > 1 ) we can 
(shown that we can) compute all probabilities of the form Pr(t /_L_+,,  

q - L _ + 2  ..... qo;q,  ..... qN-~)L_.C+ up to order eR({r/, ..... t / N _ ~ } ) + k +  1 in r. 
This is sufficient to prove our lemma, and fact more general results: for 

any size system (with L'+/> N) we can compute P r ( q _ L  + ~, q-L_ +2 ..... 70; 
q~ ..... qN)L.C+ up to order eR(q) simply by making use of the fact that 
excitations are created at rate r, providing the initial step in the induction. 
This estimate (and as a result all following estimates) is independent of L'+ 
(although its region of validity, i.e., how small r must be, does depend on 
L'+ a priori) and thus also valid for all L+ >/L'+. Essentially one simply 
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treats all the sites to the right of  site N as being empty; the correction to 
this is O(r eRl")+ l). Since the current is 

J ( r ) = r P r ( 1 ; O ) = r [ 1  - P r ( 0 ;  0 ) -  Pr(1; 1 ) -  Pr(0; 1)] (B.2) 

if we can iterate the induction step j times, we know the current to order 
2 + j, since each of  the terms on the right-hand side of  (B.2) has nonzero 
excitation number. 

So let us return to the induction step. Consider the transitions that 
occur between the different values of  q-L_+~ ..... qu -~ :  we will give 
estimates on the rates of these transitions in the stationary state. (The rate 
of a transition r ~ r', rate [ r  ~ r '  ], where r and r '  are sets of  configura- 
tions, is 

r a t e [ r ~ r ' ] =  lim (At) -~ P r ( r ' a t t i m e t + A t [ r a t t i m e t )  (B.3) 
d t ~ O  

Thus all (elementary) transitions between individual configurations occur 
at rate O, l, or  r.) 

If we consider a transition that increases eR( { r/1 ..... r/N-1} ), we see that 
if the rate is nonzero,  this can only be of  the form 

q - - L - + 1  . . . . .  q - - l '  l ' 0 ' q 2  . . . . .  r / N - -  I - '+ r / - -  L -  + I ' " ' ,  7]--  1 , 0 ,  1,  r /2  . . . . .  r / N - - I  (B.4) 

so it involves a jump across the blockage, and thus simply has rate r. 
Transitions that keep eR({r/i ..... r / u - l } )  fixed do not involve sites outside 
of { - L _  + 1, - L _  + 2 ..... N -  1 } and thus do not involve any marginal 
probabilities that are not trivially zero or  none, and so have rates that are 
simple integers. Transitions that decrease eR({r/~ ..... r/u-1} ) require that we 
know something nontrivial about  probabilities involving site N, since the 
only way to reduce eR({r h ..... r / u - l } )  is for a particle to move from site 
N -  1 to site N. So we need to estimate rates such as 

rate[eR({r/, ..... r /u-2,  1}) ~ eR({r/I ..... r /u-2,  0} )] 

P r ( r / _ L  + l ..... r/o; r/i ..... r /u-2,  1, 0 ) L .  L'+ 

Pr (q-L_ +1 ..... r/0; r/l ..... r/N-z, 1)L.L+ 

= 1 -  P r ( q _ L +  I ..... qo;ql  ..... qN-2 ,  1, 1)L.L'+ 

X [ Pr(r/_L_ + 1 ..... r/0; r/i ..... r/u_ 2, 1, 1 )L_. L'+ 

+ Pr(r/-L_ + i ..... r/o;r/i ..... r /N-z,  1, 0 )L .L '+]  -1 (B.5) 

The numerator  of  (B.5) is O(r eR~Iqt''"N-'I~+I) and we know it to 
O(r eR~l~"''''~'-'l~+k+~) by the induction hypothesis. The denominator  of  
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exact: O(1) exact: O(1) exact: O(1) exa~ O(1) exact: O(1) exact: O(1) 

: r : r : : r e)utct: r exact: r ( ) 
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J 
0 1 -  O l r )  1 l - O l r )  2 1 - O ( r )  3 1 - O ( r )  4 1 - (g l r )  1 -  O ( r )  N - 1  

to ordm" k + 1 Ioorder  k + 1 to order k -F 1 to ordelr k -1-1 to olrder k + 1 too rde r  k + 1 

Fig. 5. Markov chain-like representation for the transition rates in the partial system. 
The indices on the "states" are the eR(r/) which are altered by the "horizontal" transitions. The 
"circular" transitions are those between states with the same eR(r/). 

(B.5) is O(r eR(l"~''"~-~ll) and we know it t o  O(r eR({q''''''qN-I})+k) by the 
induction hypothesis. Thus the rate in (B.5) is 1 - O ( r )  and we know it to 
O(reR({'t,.....'tu-,) )+k + ]). 

The three types of transitions and estimates on their rates are 
indicated in Fig. 5, where we group together states with a common eR. It 
is clear that it is consistent to solve for the probabilities in the stationary 
state of the subsystem represented by Fig. 5 to O(r e~c~''" ~N-,I ~ + k + ] ). This 
completes the induction step and thus the proof of the lemma. 

The proof of Theorem 2 proceeds in identical fashion. The only dif- 
ference is that in (B.1) one is limited to considering 0 <<,N<L'+ instead of 
0 < N ~< L'+, ensuring that the transition rates for changing the excitation 
number do not depend on the boundary conditions. Thus one can perform 
the induction step one time less than for the c ( = f l =  1 case and the 
boundary dependence appear one ter earlier in the Taylor series. 
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