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Exact Results for the Asymmetric Simple
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We present new results for the current as a function of transmission rate in the
one-dimensional totally asymmetric simple exclusion process (TASEP) with a
blockage that lowers the jump rate at one site from one to r < 1. Exact finite-
volume results serve to bound the allowed values for the current in the infinite
system. This proves the existence of a nonequilibrium “phase transition,”
corresponding to an “immiscibility” gap in the allowed values of the asymptotic
densities which the infinite system can have in a stationary state. A series
expansion in r, derived from the finite systems, is proven to be asymptotic for
all sufficiently large systems. Padé approximants based on this series, which
make specific assumptions about the nature of the singularity at r=1, match
numerical data for the “infinite” system to 1 part in 10%,

KEY WORDS: Asymmetric simple exclusion process; stochastic particle
systems; series expansion

1. INTRODUCTION

The one-dimensional totally asymmetric simple exclusion process (TASEP)
1s a continuous-time stochastic process in which particles on a one-dimen-
sional lattice jump independently and randomly at unit rate to vacant
neighboring sites on their immediate right.!"’ It corresponds to a Kawasaki
exchange dynamics'®’ at infinite temperature and infinite electric field.'*’
The stationary state for this system for K particles on a ring of N sites,
N>=K, gives equal weight to all (%) permissible configurations. This
measure goes over, in the limit N — oo, K/N — p, to the product measure
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with occupation probability p. The TASEP is thus the simples driven
diffusive lattice-gas model whose dynamics does not satisfy detailed
balance.”® It is also, for the infinite lattice, an example of a microscopic
system for which one can derive Euler-like hydrodynamic equations,'® e.g.,
the Burgers equation.

In an earlier work'®’ we introduced a variant of the TASEP where the
jump rate across one bond of the system was reduced from 1 tor, 0 <r<1.
If one thinks of the TASEP as a model for fluid flow in a pipe, this is
analogous to a restriction in the diameter of the pipe. More realistically
perhaps we could consider a superionic conductor'® like Agl or KAg,I; in
the geometry of a pinched doughnut, with a time-varying magnetic field
generating an electromotive force; or a partially blocked road in a model
of traffic flow.”” Clearly the rate decrease will increase the particle density
to the immediate left of this “blockage” bond and decrease the density to
its immediate right, but what is not obvious is that this perturbation may
have global in addition to local effects. Equivalent to introducing a defect
into a growth surface,’®® this blockage can cause the nonequilibrium
stationary states of the model to exhibit a segregation into high- and low-
density regions. This allows the full complexity of the model, previously
available only through time-dependent studies, to be displayed via the
stationary state.> ' Among other features we observed for the system of
K particles on a ring of size N, with K and N large, was the equality of the
exponents governing the time and space scalings of shock fluctuations.

It is convenient to label the sites on the ring from — N/2 to N/2 (—N/2
and N/2 refer to the same site), with the blockage located at the bond
between 0 and 1. The stationary density profile for a haif-filled system can
be seen in Fig. 1. As we approach the limit N — co keeping K/N = p fixed,
we have that far from the blockage the density becomes uniform and
the stationary state appears to be asymptotically a product measure
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Fig. 1. Density profile (from time average in simulation) for a half-filled system with 600
sites and periodic boundary conditions. The blockage bond is located between site 0 and site
1 and has the value r=0.33.
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(Bramson'") has proven this) with densities lim,_ , . p(x)=p,, with
p, <p_; the p, are independent of p for | p—1/2| less than a certain
value described in the next section. The densities are related by the condi-
tion of constant current: J=p (1 —p_ )=p_(1—p_). When segregation
takes place we thus have 1/2—p, =p_ —1/2. One is of course interested
in the asymptotic densities p, and current J as a function of the
transmission rate r. In ref. 5 these could only be determined numerically;
the simple estimate obtained by neglecting the (large) correlations near the
blockage, i.e., by assuming a uniform product measure with density p_
(resp. p . ) to the left (resp. right) of the origin, gives

Jrrp_(1-p, )= ()

r
(1+r)?
which is accurate only for very small r. This is in contrast with the transla-
tion-invariant case, where, as already mentioned, there are no correlations
in the stationary state. Here, in order to obtain more accurate estimates, it
is necessary to include the effects of correlations, which decay slowly with
the distance from the blockage, typical of systems with conservative
dynamics not satisfying detailed balance.!'*'® (In ref 5 this decay was
found numerically to go like the inverse power of the distance.)

Although one is interested in asymptotic behavior, it can be fruitful to
examine the behavior of small systems with open boundary conditions for
which one can determine the stationary state exactly. In a closely related
model'> this led to an exact solution for all system sizes. Furthermore, as
we shall see, results for such systems give a systematic improvement on the
estimate (1) as well as bounds on the current J for the infinite system at
fixed r and thus also on the maximum value of p,. We therefore studied
systems, ranging in size from two to ten sites, in which particles are added
at the left with rate « and removed at the right with rate . At non-
boundary sites particles jump independently to empty neighboring sites on
the right with rate r for the jump between sites 0 and 1, where the blockage
is located, and with rate 1 for all other jumps. The process is thus defined
(on a lattice with N =2L sites) for any r > 0 by the generator .# giving the
rate of change of any function of the configuration n={n(—L+1),
n(—L+2),.,n7(L)}, where n(k)=0 or 1 is the occupation number at
sike k:

LIM =l f_rar ) =S+ L [fWiie) = f0)]

i=—L+1

L o) =T+ S LS Wimiet) —f0)]

+BLS G -) = f()] (2)
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where #;_. ;(k) gives the configuration at site k after an attempted jump
from site i to site j:

1, k=j and n(i)=1
ni- (k)=40, k=i and #(j)=0 (3)
n(k), otherwise

The boundary terms are given in terms of

(1+1)/2, k=i

n(k), kot )

ni‘i(k)z{

2. EXACT SOLUTIONS FOR SMALL SYSTEMS

For a system with 2L sites there are 2** possible configurations. By

considering the set of equations { #f;> =0 where f; is the characteristic
function of the ith configuration, one obtains a system of equations whose
(normalized) solution is the unique stationary state for the model, i.e., one
obtains the unique stationary solution of the master equation for the open
finite system.

Solving such a system of equations is a daunting computational task.
However, by fixing « and f and then making use of the reflection symmetry
of the problem (which for « = # reduces the number of variables by a factor
slightly less than 2), we were able to exactly solve for systems up to size 8
leaving r as an indeterminate parameter and size 10 for fixed r. The com-
putations were performed using Maple V running on a SPARCstation 2.

Typically we took a = f=a=1; it is intuitively clear (and not difficult
to prove''"), given the asymptotic product structure behavior of the
infinite system stationary measure, that the current should become inde-
pendent of a and g for large L, provided they are greater than some critical
value which goes to zero as r goes to zero and equals 1/2 for r > 1. This
critical value of a = a, is simply related to the maximum current J,,(r) the
infinite system with blockage r can support; J . (r)=aJ(l—a.), ie.,
alry=[1—(1—4J_,.)"*]/2 is just the density of a product measure at the
maximum current. Clearly J,,.(r) is a monotone nondecreasing function of
r equal to 1/4 for r > 1. The system “selects” the state of maximum current,
p.=[1—-(1-4J,,,)")/2 and p_=1—p,, as long as the boundaries
can supply and remove particles quickly enough.!'® The (asymptotic) state
should therefore not depend on the precise values of « and f§ with correc-
tions local to the boundary region.!!*-'” Alternatively, if one considered
periodic boundary conditions instead of an open system, we would expect
equivalent asymptotics with densities p_=1—p_, for all values of the
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average density p between [1—(1—4J_,)"*]/2 and [1+(1—4J_,,)"*]/2.
For average densities outside the interval the limiting asymptotic densities
should be equal to the average density both to the left and right of the
blockage. The behavior is illustrated in Fig. 4, where we show, for each
value of r, the values of p for which p=p, =p_ is “allowed.”

We present some of the results for small systems below. J,(r, a) is the
steady-state current in a system with 2L sites at a =f=a; J,(r)=J(r, 1).
We have

2ar 2r 1 r
M= =y <r’ §>=1+3r ©)

Jo(r, a)=2ar[4a* + 8a® + 4a* + (Ta + 12a* + 6a°) r + (2 + 4a + 2a?) r?]
x [8a® + 16a* + 8a® + (14a% 4 36a” + 36a* + 124°)r
+ (18a +45a° + 44a°18a*)r? 4+ (5 + 14a + 14a> + 6a*)r*]~'  (6)

7.(r) 2r(16 4+ 25r + 8r%) . l) 2r(9 + 29r + 18r2)
Fi= -_— =
2 32 +98r + 125¢2 + 391 237°2/) 18 +85r + 2152 + 130r°

(7)
Ja(r) = [4r(47775744 + 261095424r + 6694243842
+ 10096805761 + 968982368 r*
+609395274r° + 250834237 + 65287925r7
+9784215r° + 644781r°)]
x [191102976 + 1331036160r
+ 44473169921 + 9277942272r*
+ 12731145304r* + 11671707972r°
+ 717051350675 + 2914237861+7
+ 753023405r% + 112354075r° 4 7383541r'°] ! (8)

We observe that J,(r) is a rational function of r with integer coefficients,
and the order of the function and the complexity of the coefficients grow
rapidly with system size—J,(r) has terms up to 34th order with the largest
coefficient being 51 digits long, and is reproduced in Appendix A. We note
that the value of J,(1) was obtained explicitly in ref. 15 for all L, namely
that

13 3
JL(1)=Z+4(1+4L)=J°°“)[I+1+4L] ®)
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3. BOUNDS ON THE INFINITE SYSTEM

For r=1, a product measure with any density pe[0, 1] is stationary
in the infinite system, and thus the system can have any current in the
range 0-1/4. For r <1, this is not necessarily the case; J_,.(r) may be less
than 1/4. In this case there is, as already noted, only a range of asymptotic
densities, satisfying |p, —1/2| > [1 —4J,..(r)"*1/2, which is permitted.
The problem thus is to find bounds on J,(r). A very simple bound on
Jmax(7) can be obtained by noting that if we remove the right (or left) half
of the system, i.e., keep all sites there empty (occupied), we are left with a
system of L sites with input (removal) rate ¢ and removal (input) rate r.
By a direct comparison of the original and new (“removed”) systems,
obtained by coupling, i.e., simultaneously attempting jumps at a given
lattice bond in the two systems, it is possible to show that the current
HL: o, B) in a system of L sites with input rate «, removal rate §, and all
“internal” jump rates now being unity, satisfies the inequalities

Jrna)<HL;a, ry=J(L;r, a) (10)

The last equality as well as exact formulas for J(L; a, B) have been
computed in refs. 15 and 17. In particular for a>r and r <1/2 we have
lim, _ . J(L;a, ry=r(1—r), so that J,,(r)<r(1—r) for r<1/2.

For a and r both greater than 1/2 the right-hand side of (10)
approaches 1/4, so it yields no new information—just a proof that J_,.(r)
cannot exceed 1/4.

To obtain better bounds, we note that for any configuration, since the
maximum rate at which a particle attempts to jump onto any site is bounded
by one, the current in a system of size L with boundary conditions
a=f=1 cannot increase as L increases. This can be made precise with a
little work by using (similar type) comparison or coupling arguments as
before. Note that a=f=1 corresponds to keeping the site —L always
occupied and the site L+ 1 always vacant in a system of size L' > L. Thus
J,(r) is monotonically decreasing in L, and for every finite value of L, J,(r)
is an upper bound for J(r). [ Similar arguments show that J,(r, a) is non-
decreasing in r and a.] These bounds prove the existence of a gap in the
set of stationary measures of the infinite system; the results for finite L
(illustrated in Fig.2) show that wherever there exists an L such that
J(r) < 1/4 there is a forbidden range of currents. [ One result from our
simulations is that J,450(0.8) = 0.24979(5), indicating that the gap exists at
least up to r=0.8.]

We note here also that letting @ — o0 in J,(r, a) corresponds to reducing
the size of the system from 2L to 2(L—1), so that lim,_ . J,(r,a)=
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Fig. 2. J.(r.1) and J{r, 1/2) for several values of L. Where J,(r, 1)< 1/4 there must be a
gap in the allowed stationary measures of the infinite system.

J. _\(r). Using monontonicity in «, this implies again that J,(r) is
monotone nonincreasing in L.

For the case a=f=1/2 the sequence J,(r,1/2) appears to be
increasing in L, and we believe that J_(r) > J,(r, 1/2), since the boundary
condition with rate 1/2 should reduce the number of particles entering the
system as compared with a boundary-free system where the asymptotic
density would be >1/2 (on the left), but unfortunately we cannot prove
this result. Proving such an inequality is nontrivial since J_(r) is the maxi-
mum current the infinite system can have; there exist stationary measures
where the current is less than J,(r, 1/2). Thus our results for finite L only
provide rigorous one-sided bounds. Note also that J,(1,1/2)=1/4 for
all L'

Series Expansion

While there is' no apparent pattern to the “raw” expressions for the
current (5)—(8), (A.1), one does emerge if we examine a Taylor expansion
around r=0. We obtain

Jiry=r—=3r+3r* -2 +8r -5+ 0(r") (11)
JAry=r—3r 4 By — Blpt 4 28,5 8887,6 4 O(r7) (12)

_ 3,2, 19,3 _ 215354, 919407829 .5
Jar)=r—3r°+ j5r" — s7ss"" + Fisscosas’

7398899579671 6 7
— ai7sass08s12 1+ O(r") (13)
_ 3,2, 19,3 21535 .4 77720356627 .5
Jo(r)y=r—sr°+ gr' — Sast” + fasierossses

1067903077191004635349 .6 7
+ Te31anz073901153¢656 7+ O(r”) (14)
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There is a clear pattern: as we increase the size of the system, the low-order
coefficients stop changing after a certain point. Assuming the continuation
of this behavior, and including the results for the size 10 system, we have

. 3.2, 19.3 21535 4 | 77729356627 .5
Jolr)=r—35r"+ 1er° — S7gast” + 1agréioe5%68

—~0.3278724755(1)r® + O(r7)

.59.7 3.33 -
=r—%r2+152r3—52533r4+' 31213.3177883 s

—~0.3278724755(1)r® + O(r") (135)

In the second part of (15) we show the prime factorization of the coef-
ficients; the denominators appear deceptively simple, while examination of
the numerators proves less instructive.

Including the dependence of the boundary terms (i.e., taking a#1)
does not significantly alter this behavior:

3 9 27
Jl(r,a)=r—zr2+ﬁr3—@r4+O(rs) (16)

9 4 3 2_8 _7
Jz(’,a)=r_§,-2 a* +18a” + Ta a \

2 da’(a+1)*
54a’ +216a°® + 300a° + 64a* —294a” —370a” — 188a —39 ,
- . . r
16a*(a+1)

+0(r%) (17)
3 19
J —p 22,273
Ara)=r 5" +16r

+(514a" + 6939a'® + 41551a"? + 1443874"! + 316671a"°
+432661a° + 285181a® — 176743a” — 7021574°

—944908a° — 799104a* — 4575044

—172480a* — 38528a — 3840)r*

x [256a’(1 +2a)a+2)* (a+1)"]~" + O(r%) (18)

The dependence on the boundary appears one term earlier than in
(11)-(14), but otherwise, the structure is the same.
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In fact, the assumption regarding the behavior of the Taylor coef-
ficients for progressively larger systems expressed in (11)-(18) can be
proven to be correct:

Theorem 1. Fix L,. Then for L, < L,, J,,(r)=J.(r)+ O(r*'+2).

Theorem 2. Fix L, Then for L,<L, and a>0,
J(r,a)=J,(r)+O(r"* 1)

Thus we see a small system not only bounds but also provides a good
approximation (at least for small r) for any (finite) system that is larger.
This also strongly suggests that the approach of J,(r) to J_(r) is exponen-
tial for r> 1. Of course the rate of the exponential approach vanishes at
r=1, where the convergence becomes algebraic [see (9)]. We do not con-
sider the infinite system, as our proof does not provide bounds uniform in
the system size; we reserve the proof for Appendix B.

4. PADE APPROXIMANTS

The Taylor series given in (15) gives an accurate measure of the
current for small r, but for large r it is less successful. In fact, we can see
that the series must break down by r =1: although one commonly thinks
of r as being a transmission rate <1, it is perfectly acceptable to take r > 1
in the generator (2). It is also fairly easy to see, by comparison with a
system with a boundary at the origin, that the infinite-volume current
J.(r) will have the same value for all r> 1, namely J_(1)=1/4, so that
there must be a nonanalyticity for some r<1 in J_(r). One can also
examine the coefficients of (15) and see that they apparently decrease (in
magnitude) rather slowly, indicating that the radius of convergence of the
series is most probably 1 (although we do not even have a proof that the
series converges of any r >0, just asymptotic results as r — 0 for a fixed
number of terms). Some numerical analysis indicates that there is no dis-
continuity in any of the derivatives of J_(r) at r = 1; this evidence leads us
to hypothesize that there is an essential singularity at r=1 in J_(r). An
alternative which cannot be ruled out by our results is that J(r) = 1/4 for
r>r, with r, < 1. Numerical results for the structure of J,(r) would seem,
however, to argue in favor of a changeover at r=1.

We thus look for a function of the appropriate form the current. The
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“simplest” function with an essential singularity at r=1 that also gives
J.(0)=0 and J_(1)=1/4 is a function of the form

Joo(r)=1/4—exp[ f(r)]/4 (19)

where f(r) has a simple pole at r=1. We therefore examined functions of
the form

vt L |20
firy=4 4CXP|:(1_r)q(r)] (20)

Specifically, we used our Taylor series to fit the following Padé
approximants:

1 1 —4r(1 +a,r+a,r?)
TRy =7~ 21
s 4exp[(1—r)(1+b,r+b2r2) (20
11 —4r(1 +a\r+asr’ +ayr?)
43 ___ 3
iy [ (=11 —B,r +65r) (22)
1 —4r(1 +ajr+air?)
J34 —___ 1 2
N=ama™ [(l—r)(l+b'1’r+b’2’r"'+b§’r3):] (23)

The actual values of the coefficients of the Padé approximants are not
particularly revealing, as one might expect. The Padé functions do,
however, appear to be converging pointwise: for re[0, 1] the maximum
difference between any of J3*, J*, and J* is less than 2 x 10 ~°.
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Padé approximant J*(r) —

0.05 - Numerical results qJ

Ow i 1 L 1

0.0 0.2 0.4 0.6 08 1.0

r

Fig. 3. Taylor, Padé, and numerical results. Estimated errors for the numerical calculations
are less than the thickness of the lines, ranging from 5x 107% to 2x 1077,
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Of course we are not interested in how well the different approximants
approximate each other, but how well they approximate J_(r). We thus
must compare the approximants with numerical simulations. We see in
Fig. 3 that the approximation 1s within the error bounds of the simulations;
we happened to have plotted J%, but any of the approximants would
have fit the data as well. In comparison, a Padé approximant that behaves
quadratically or quartically at r=1 (as opposed to exponentially) looks
qualitatively similar but does not fall within the error bounds of the
simulations.

The simulation results were obtained by direct simulation of the
TASEP dynamics; progressively larger systems were used until the current
reached an asymptotic value. For small values of r this occurred quite
quickly, but the needed system size grows quite rapidly as one approaches
r=1: for r=0.7 we needed to investigate systems with 6400 sites and for
r=0.8 we needed to investigate systems with 15000 sites.

Our results can also be viewed as the determination of the phase
diagram for the system. As mentioned earlier, the current J_(r) is the
maximum stationary current permitted by the infinite system—with some
boundary conditions the current may be less. Accepting''!’ that the station-
ary measure is asymptotically a product measure, then J_=p (1—p.),
and the bound on the current is equivalent to a bound on the allowable
range of densities. We plot the boundary of this range, the critical density,
against the transmission rate in Fig. 4. If the overall density of the finite
system in a periodic box p was in the disallowed region, the system would
have to segregate with high density p _ to the left of the blockage and low

1.0

08|

Allowed Allowed

Fig. 4. Schematic phase diagram of allowed asymptotic densities p_ and p, versus transmis-
sion. In the region labeled allowed, p_ =p, =p is permitted. The boundary points between
the allowed and not allowed region are, for a given r, the unique permitted values of p .. The
heavy line indicates the region excluded by currently available exact results; the thin line and
the shaded region are determined by the Padé results.

822/77/1-2-4
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density p, to the right of it, with p_+p,=1land p=cp_+(1—c¢)p, for
some fraction ¢, 0<c< 1.

The phase diagram is apparently quite different from that normally
observed in systems that phase segregate, with a cusp at the critical point
if one believes the Padé approximants accurately describe the behavior of
the system. Of course one should remember the rather unique nature of this
type of transition.

5. DISCUSSION

When a system has dynamics that do not satisfy detailed balance, the
steady states do not (in general) have the form of Gibbs states. Thus, even
a qualitative description of the nature of the steady states, particularly with
respect to the dependence on the parameters entering the dynamics, is
lacking. Standard perturbative or finite-size extrapolation techniques
available for Gibbs measures are generally inapplicable, and most of our
knowledge comes from computer simulations, approximate calculations
using renormalization group (universality) ideas, and a few exactly soluble
models.

It thus is quite remarkable that for the system considered here infor-
mation determined from a system with ten sites not only provides rigorous
bounds, but also appears to predict accurately the behavior of the current
in an infinite system. At least this is true numerically for a system with 10*
(or more) sites to within 1 part in 10* for all values of the parameter r. This
is particularly interesting given that quantities besides the asymptotic
current, e.g., the local density near the blockage, are not given accurately
by the results from small systems.

We hope that it will be possible to determine a general formula for the
terms in our Taylor series— certainly the sequence of denominators
(1,2,24 2933, 22637) seems tractable. Since the coefficients are independent
of system size (if the system is big enough), only reasonably-sized systems
need to be studied in order to obtain useful results. Unfortunately, direct
computation of higher-order terms seems unlikely, given that the computa-
tional complexity grows exponentially, without further theoretical input.

Even if our computations cannot be extended, there remains the
possibility of proving that some of our qualitative description of the phase
diagram is correct. Our series is only proven to be asymptotic for small r,
but we have already seen that finite systems can serve to bound certain
properties of the infinite system for arbitrary values of r: for example, we
believe that J,(r, 1/2)<J_(r) and we know that J_(r)<J.(r, 1) for all
L>0and all 0<r<1.
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APPENDIX B. PROOF OF THEOREM 1

To prove Theorem 1, we will need to consider systems with unequal
numbers of sites to the left and to the right of the blockage, say L _ and
L, respectively; J,_ ;. (r) will represent the current in such a system with
a= f=1. We will prove the following lemma:

Lemma 1. Fix L_and L,. Thenfor L'_<L_and L' . <L,
Jo_ e (r)=Jp (1) +O0(rF-*?) and J,___L+(r)=JL__L;(r)+0(r"'+“)

Theorem 1 is a direct consequence: for L, > L,

JLz(r)EJLz‘Lg(r)=JL1‘L|(r) + O("L'+2) =JL|,L|(r) + O(VL'+2)
EJ,_I(I') +O0(ri1*?)

Now we prove the lemma, considering only the case L', <L, since
the case L'_ <L _ is the same by symmetry. We will need to consider
probabilities of certain collections of configurations. We write

Pr(n _y s W_p_ sz Mo Mis Hases ’7N)L_,L'+ (B.1)

for 0OSN<L',. This represents the marginal probability of the configura-
tion at sites —L_+1, —L_+2,., N; the rest of the sites can take
arbitrary values. The semicolon indicates the position of the blockage in
the system.

Let eg(#n) be the number of the n,, 7,,.., n that take the value 1, ie.,
er(n) =321, n,. For r small, particles to the right of the blockage are rare
and can be treated as excitations; ez(#) can be thought of as the (right)
excitation number in the system.

Our proof proceeds by induction: Suppose we know all probabilities
of the form Pr(n_, ,\.7_1 42000} N1sems Nn)e_., to a certain
accuracy, namely to order ex({#,,.., 75}) +k in r. Then (for N > 1) we can
(shown that we can) compute all probabilities of the form Pr(y_, ..,
M 425 Mos Hises v —1)_, 17, UP tO Order er({M1ssiv_1}) +k+1inr.

This is sufficient to prove our lemma, and fact more general results: for
any size system (with L', > N) we can compute Pr(n_,_ . 1,7_1_ 424 Y0;
Hiss AN)L_, 1, UP tO order eg(n) simply by making use of the fact that
excitations are created at rate r, providing the initial step in the induction.
This estimate (and as a result all following estimates) is independent of L',
(although its region of validity, i.e., how small r must be, does depend on
L', a priori) and thus also valid for all L, > L', . Essentially one simply
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treats all the sites to the right of site N as being empty; the correction to
this is O(r¢®*"+1). Since the current is

J(r)=rPr(1;0)=r[1—-Pr(0; 0) — Pr(1; 1) — Pr(0; 1)] (B.2)

if we can iterate the induction step j times, we know the current to order
2+ j, since each of the terms on the right-hand side of (B.2) has nonzero
excitation number.

So let us return to the induction step. Consider the transitions that
occur between the different values of #_, ,,,..,7x_,: we will give
estimates on the rates of these transitions in the stationary state. (The rate
of a transition 7 — 7', rate [t — t'], where 7 and 7' are sets of configura-
tions, is

rate[t > 7' ] = lim (d4:)~'Pr(z' attime t+ 4t | rattime7) (B.3)

4r—0

Thus all (elementary) transitions between individual configurations occur
at rate 0, 1, or r.)

If we consider a transition that increases eg({#,,.., 75_,} ), we see that
if the rate is nonzero, this can only be of the form

”—L_+17"'7 '7—1’ l’ O’ ’725-'-’ ’7N—l _)'7——L_ + 1 ’I—la Oa 1’ ’72""’ ’7N—I (B4)

so it involves a jump across the blockage, and thus simply has rate r.
Transitions that keep eg({7,, .., ny_,}) fixed do not involve sites outside
of {—L_+1,—L_+2,.,N—1} and thus do not involve any marginal
probabilities that are not trivially zero or none, and so have rates that are
simple integers. Transitions that decrease eg({7,,.., 75_,}) require that we
know something nontrivial about probabilities involving site N, since the
only way to reduce ex({#7,,...7y_,}) is for a particle to move from site
N—1 to site N. So we need to estimate rates such as

rate[ek({”l,---, -2, 1})—’ eR({”l’"', HNn_2, 0} )]
Pr(n 1 sy os Myses iv—2, 1,0) L 1,
- Pr(n_;_ 415 o3 Nisn A2, I)L_.L‘+
=1-Pr(n_,_,1vmoiftisin_as 1 Do .o,
X[Pr(n_p_ 1o Moi Mises In—2s 1, l)L_.L'+

+Pr(7 L o M v, L0V 1] -! (B5)

The numerator of (B.5) is O(re®{m-~mw-1D+1y and we know it to
O(rRimenv1hy+k+1y by the jnduction hypothesis. The denominator of
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exact: O(1} exact: O(1) exact: O(1} exact: O(1) exact: O(1) exact: O(1)
Q exact: r m exact: r m exact: r m exact: r m exact: r exact: r Q
1-0(r) ] 1-0{r) 2 1-0(r) 3 1-0{r) 4 1-0{r) 1-0(r) N-1

toorder k +1 to order k +1 toorder k 4+ 1 toorder k + 1 toorder k+1 toorderk +1

Fig. 5. Markov chain-like representation for the transition rates in the partial system.
The indices on the “states” are the ex(#) which are altered by the “horizontal” transitions. The
“circular” transitions are those between states with the same eg(n).

(B.5) is O(re&im--mv-1D) and we know it to O(re’im-m-1H+ky by the
induction hypothesis. Thus the rate in (B.5) is | — O(r) and we know it to
O(r”"({'” ----- n~-|}>+k+1).

The three types of transitions and estimates on their rates are
indicated in Fig. 5, where we group together states with a common ej. It
is clear that it is consistent to solve for the probabilities in the stationary
state of the subsystem represented by Fig. 5 to O(rerimemv-1l)+k+1y Thjg
completes the induction step and thus the proof of the lemma.

The proof of Theorem 2 proceeds in identical fashion. The only dif-
ference is that in (B.1) one is limited to considering 0 < N < L', instead of
0<N<L',, ensuring that the transition rates for changing the excitation
number do not depend on the boundary conditions. Thus one can perform
the induction step one time less than for the a=f=1 case and the
boundary dependence appear one ter earlier in the Taylor series.
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